Diseases of the gastrointestinal (GI) tract are a common problem in cats, and the clinical signs associated with these diseases, vomiting, diarrhea, anorexia, or weight loss, are some of the most common presenting complaints for cats taken to veterinary clinics in the United States. There are many causes for GI disease in cats, and an equally diverse number of pharmacologic approaches for management of GI disease; however, management of any GI disease is not complete without the concurrent addition of appropriate dietary therapy. This therapy may be completely curative in some instances (e.g., dietary allergy), but even in cases where diet is not the cause of the GI problem, appropriate dietary therapy is essential to the long-term management of GI disease. Whether that is a highly digestible diet to improve digestion of foods by a diseased GI tract (e.g., inflammatory bowel disease or lymphoma) or a high-fiber diet to improve colonic function in cats with colitis, the role of diet in management of disorders of the GI tract cannot be ignored. This article will review the current state of understanding of the role of diet in the management of GI diseases in cats and will offer the reader an overview of diet management strategies in cats.

© 2008 Published by Elsevier Inc.

Keywords: dietary therapy, highly digestible, hypoallergenic, hydrolyzed, insoluble fiber

Cats are obligate carnivores and evolved consuming a diet of prey that was high in protein, had a low to moderate fat content, and contained a minimal amount of carbohydrate (CHO) that was consumed in small quantities many times per day, and, as such, they are metabolically and functionally adapted for diets quite different from what they are given. Furthermore, feeding a high-protein, low-CHO diet is in opposition to the generally accepted idea that feeding a “bland diet” or inducing gastrointestinal (GI) “rest” is the best method of managing GI disease. The classic bland diet that most clinicians are familiar with contains a small to moderate amount of highly digestible protein, low amounts of fat, and moderate to large amounts of a highly digestible CHO source such as white rice. Although cats can quite efficiently digest and use CHO as a source of metabolic energy, they have no requirement for them, and their metabolic machinery is not ideally suited to use them in large doses—a fact that is well illustrated in the prolonged elevations in blood glucose (i.e., up to 10 hours after a high-CHO meal) that occur in normal cats. Although there is no debating the idea that highly digestible nutrients are key to dietary management of both canine and feline GI disorders, the idea that cats should be fed high-CHO diets requires further analysis. In contrast to the bland diet approach, the idea that “resting” the GI tract by not feeding the animal during bouts of GI disease has been shown to be an effective approach for very short-term (less than 24-hour) management of acute GI disturbances, such as dietary indiscretion or acute, self-limiting gastritis. However, it is well understood that nutrients present in chyme (especially glutamine) are essential to the growth and replacement of intestinal epithelial cells, and that normalization of intestinal flora and motility is best achieved by the presence of food in the lumen. There are several excellent articles citing the benefits of early re-institution of enteral nutrition in animals with severe GI disease, and one of the best examples is in the management of puppies with parvoviral enteritis. Further, cats that are not eating normally are at a greatly increased risk of development of hepatic lipidosis. Thus, the idea of reducing intake to control GI disease is not an optimal solution and it is potentially dangerous to the well-being of the cat. Although it is clear that the level of protein, fat, and CHO in feline diets is a topic of significance for a variety of feline complaints, what is important to this discussion is the role of these nutrients on GI tract function and the composition of the intestinal flora. Diet and its impact on the intestinal flora are increasingly suspected to have a major role in the development of many feline intestinal diseases, most prominently, inflammatory bowel disease (IBD). Although the role of diet in both development and management of GI disease is an evolving subject in cats, the goal of this article will be to provide a review of the data available on the approach to dietary therapy in the management of GI disease in cats.

Feline Nutrition

To first understand the importance of diet in the management of feline GI disease, it is necessary to recall the unique nutri-
tional needs of the cat. There are several major differences in feline nutrient requirements and metabolism, but only the most prominent will be discussed here; the interested reader is referred to several reviews on this subject for further information. The first, and arguably the most important, nutritional difference is that cats have an obligate and increased daily need for dietary protein (29% minimum in cats vs 12% for dogs), which cannot be met entirely by plant source proteins. In addition to this well-known requirement, cats have specific requirements for sulfur and aromatic amino acids (eg, taurine, arginine, methionine, tyrosine, and so forth), increased requirements for vitamin A, and increased requirements for thiamine (as much as 4 times) for many other B vitamins, and specific requirements for arachidonic acid and other nutrients such as carnitine, and must have preformed vitamin D in their diet because they are unable to synthesize it from ultraviolet light activation of precursors in the skin. The importance of adequate protein in the feline diet and its specific effects on the GI tract are illustrated in a study in which cats fed an extremely low-protein diet (21% protein, 49% carbohydrate) for 10 weeks developed consistently longer villi, deeper crypts, and a thicker epithelial cell layer than cats fed a more typical dry feline diet (33% protein, 42% carbohydrate). This finding was interpreted as an adaptive response in the cat’s intestinal tract to increase the gut surface area to maximize protein absorption. Further evidence that diet may be especially important in the development and management of feline GI diseases was suggested by Guilford and coworkers in 2003 when 60% of cats with diarrhea in their study responded to dietary therapy, which suggests that a large percentage of cats with intestinal disease have either dietary intolerance or diet-induced changes in the intestinal flora that result in development of diarrhea. In another study, the fecal microflora from kittens fed high-protein or moderate-protein diets were compared by assessing the effect on these differing amounts of dietary protein on 4 different bacterial species. The kittens fed a high-protein diet had lower fecal counts of Escherichia coli, Bifidobacterium, and Lactobacillus spp, but no difference in the counts of Clostridium perfringens. The authors suggested that cats fed high-protein diets may benefit from the addition of prebiotics to the diet to increase the population of beneficial Lactobacillus spp. However, the beneficial bacterial flora populations have not been well characterized in cats, and most of the data have been obtained from cats on commercial, CHO-based diets, which may result in a different profile that would be expected in a cat consuming a more traditional feline diet. Most recently, data evaluating the effect of diet and IBD on the intestinal flora with a technique called fluorescence in situ hybridization as a means of molecular detection of bacterial DNA also reveal a significant difference in the number and types of microflora in the small intestine of cats. These preliminary data suggest that diet may have a very important role in the development of a “normal” flora in cats and may be equally important in the management of cats with intestinal disease. This effect on the enteric flora may be further manipulated by the use of prebiotics (substances that serve as a preferential food source for beneficial bacteria) or probiotics (live microbiologic food supplements) as part of dietary therapy. Probiotics in humans and other species have been shown to modulate the immune response, produce products that have antimicrobial properties against pathogens, and improve the balance of the resident microflora to reduce colonization by enteropathogens. Only a few studies have been performed to assess their effect on the GI tract of healthy cats, but studies in cats with GI disease are lacking.

Principles of Dietary Therapy of Gastrointestinal Disease

There are a variety of tried and true principles that guide the use of dietary therapy in the management of GI disease, and these will be briefly reviewed here. The more food that is consumed (ie, larger meal size) in a patient with GI disease, the more likely the food will be vomited or expelled in diarrhea because of inefficient digestion or absorption. Also, the higher the nutrient density (particularly fat content), the slower the food will empty from the stomach, again increasing the chance for it to be expelled in vomitus or for gastroesophageal reflux to occur resulting in regurgitation. Cats, in particular, have a relatively less distensible stomach and are more adapted to small, frequent meals (eg, 10-20 small meals/day) rather than larger meals offered once or twice daily. Thus, feeding cats with GI disease highly digestible diets of moderate energy density in small but frequent meals (at least 3-4 meals/day) is likely to be more effective. In addition to the above principles, it is generally true that the more liquid the diet, the faster it will empty from the stomach, thus liquid diets empty the fastest, canned foods are the next fastest, and dry kibbled food the slowest. If a gastric motility disturbance, gastroesophageal reflux, duodenogastric reflux, or other disorder causing gastric motility dysfunction (eg, gastritis) is suspected, feeding a diet that will empty more quickly from the stomach may be very beneficial. Remember that if too much liquid is introduced into the stomach at one time, diarrhea or intestinal cramping may result, because the small intestine is not able to accommodate large boluses of food entering it at one time. This is a key principle to consider when planning feeding for cats with feeding tubes as well.

Another consideration for planning nutritional therapy in cats is to feed a diet using a form and frequency that is most appropriate for the region of the GI tract and the problem that exists. For example, in a cat with an esophageal stricture, food fed in small meals in liquid or gruel form is often able to successfully pass through the cicatrix, whereas other food types (eg, dry food) will not and will be regurgitated. If gastritis or other gastric function disturbances are occurring, reducing the size and increasing the moisture content of a meal will decrease gastric retention and vomiting. Conversely, when introducing food into the duodenum or jejunum directly through a jejunostomy tube, the best approach to prevent development of diarrhea is to feed either very small boluses of liquid food or food administered slowly and
that results from the presence of increased amounts of undigested protein in the fecal stream. In particular, this may enhance the growth of pathogenic species—a problem that would further worsen the diarrhea or concurrent GI disease. The increased presence of biogenic amines and their products (aromatic compounds) can have a detrimental effect on the colonic mucosa: altering their lifespan and affecting their normal function. In short, maldigestion of protein, whether it is due to poor-quality protein sources, poor preparation (ie, proper treatment of proteins in the food is also essential to increasing their digestibility in pet food), or primary intestinal disease that decreases digestion and absorption, will result in digestive intolerance and development of poor fecal quality, ranging from soft stools to diarrhea.

In many GI diseases, especially inflammatory diseases like IBD, the GI mucosa is compromised and may be more likely to allow exposure of mucosal immune cells to proteins or protein antigens, and will then recognize this protein as foreign.18 In these situations, the diet should contain protein sources that are very highly digestible and of good biological value. This increases the probability that the protein will be digested and absorbed, so that the animal’s energy and protein needs will be met, while decreasing the chances that intact proteins (which are more immunogenic) will cross the damaged mucosa, causing more inflammation and possibly an allergic reaction.

Adverse reactions to food are generally classified by dividing them into immunologic (food allergy) and nonimmunologic (food intolerance) categories. The immunologic (or immune-mediated) causes of adverse reactions to food are the true food allergies or food sensitivities, and can be immunoglobulin (Ig)E- or non-IgE–mediated events. These types of events are caused by an antigenic reaction to a food ingredient, such as proteins, lipoproteins, glycoproteins, and lipopolysaccharides, and are associated with both dermatologic and/or GI signs in affected cats.19 There are a variety of predisposing factors for development of a food allergy, including genetics, age, poor digestibility of proteins, a defective mucosal barrier, defective oral tolerance, and increased mucosal permeability. Based on the number of exclusion diets on the pet food market, one would guess that the condition is both readily diagnosed and common; however, in reality neither is true. The true incidence of food allergy as a cause of GI signs in cats is not known, but is likely important in 20% to 25% based on the study by Guilford and others.11 Remember that other causes of diarrhea and pruritus are more common than food allergy, and many causes of diarrhea will respond to dietary manipulation. Thus, these other differentials should be ruled out before an elimination trial is performed (because it is both expensive and difficult to perform in households that have multiple pets), and the use of a novel protein source is both expensive and not necessary if the problem is not dietary allergy. Elimination trials are most effective if a complete dietary history can be obtained, so that the diet chosen for the trial does not contain the offending protein. Further, it is essential for an elimination trial to be conducted over a minimum of 8 to 12 weeks, and, during that time, the cat must consume only the prescribed diet, or food...
allergy cannot be effectively ruled out as a cause of the clinical signs. Finally, the debate over whether a novel protein versus a hydrolyzed protein diet is better for diagnosis of food allergy continues. However, there is general agreement that it is in the best interest of the cat and the owner to feed a complete and balanced diet—not only for the duration of the food trial, but also after it. Thus, feeding a home-cooked diet is fine if the diet has been formulated by a nutritionist to be complete and balanced, and if the owner sticks to the diet recipe. One advantage of hydrolyzed protein diets is that the antigenicity of the proteins is minimized by enzymatic hydrolysis to produce low-molecular-weight protein hydrolysates. The small peptides present in these diets are less likely to be cross linked by the immunoglobulins, and thus are less likely to trigger the inflammatory cascade that is the result of this reaction. Although these diets are not completely antigen free, they can be particularly helpful in situations in which obtaining a comprehensive diet history for selecting a novel protein diet is impossible, and they are diets formulated to be complete and balanced.

Nonimmunologic causes of adverse reactions to food can be divided into 2 categories: food intolerance and dietary indiscretion. Food intolerance primarily causes signs of GI upset (vomiting or diarrhea), but occasionally dermatologic signs such as pruritus can be observed and will confuse the issue. Food intolerance may be caused by metabolic (eg, lactose intolerance), pharmacologic (intolerance of food additives, and so forth), or idiosyncratic (any food substance, additive, preservative, and so forth, that results in an adverse reaction in the GI tract). Food poisoning can also be a form of food intolerance. Most animals with food intolerance will respond well (in a period of 1-3 weeks) to a diet change to one that does not contain the offending agent. This usually does not require feeding an exclusion/novel antigen diet, but often animals respond well to those diets because they are devoid of many of the offending agents. Dietary indiscretion is generally associated with scavenging, gluttony, pica, or ingesting inappropriate or new foods that result in GI upset. In most cases, this type of adverse reaction to foods is really diagnosed from the history and is usually quite responsive to dietary therapy with highly digestible diets.

Fat

In general, dietary fat is highly digestible in normal animals, with digestibility often exceeding 90%. Furthermore, the presence of fat in the feline diet is essential to their acceptance of the food, as palatability of foods is enhanced with addition of fats, and many cats will not eat low-fat diets or diets with nonanimal fat sources (eg, they prefer animal fat over any plant oils). Cats also have a specific requirement for particular fatty acids from animal tissues (ie, arachidonic acid) in their diet because they are not able to synthesize it from plants or other sources. However, because fat digestion is a complex, multi-step process, it can be disrupted in animals with severe GI, pancreatic, or liver diseases. This is problematic because undigested fats end up in the colon, where bacteria use it and increase their numbers (overgrowth, bacterial colitis) and produce osmotic (free fatty acids) and secretory (hydroxy fatty acids) molecules from the fat. The end result of increased fat reaching the colon is steatorrhea and diarrhea. Fortunately, cats appear to have a much higher tolerance for fat in the diet, exocrine pancreatic insufficiency in the cat is a very uncommon problem, and lymphangiectasia and other forms of protein-losing enteropathy, exacerbated by fat in the diet, are extremely uncommon in cats. Thus, of the 3 dietary components present in cat foods, fat may be the nutrient that has the smallest effect on intestinal function and management of GI disease in cats. There has only been one study investigating the role of the level of fat in dietary management of cats with chronic diarrhea to date. In that study, the effectiveness of a highly digestible low-fat diet was compared with a highly digestible, high-fat diet, and no difference was found between the diets in their effectiveness for management of the diarrhea. In fact, the percentage of cats improving on either diet was the same: 68%. Thus, the idea that diets for GI disease must be low fat to be effective is not always true in cats and, in some cases, may be counterproductive if cats refuse to eat it. Nevertheless, some degree of fat restriction may be beneficial in cats with GI diseases resulting in severe malabsorption or disruption of bacterial flora, cats with chronic pancreatitis (who are more prone to develop exocrine insufficiency and bile duct compression), or cats with severe liver disease that may develop cholestasis or bile acid deficiency. However, the level of fat that should be considered in these situations has not been determined, so firm dietary recommendations cannot be given.

Carbohydrates

The role of starch in diets is as an energy source, but because cats, as obligate carnivores, use protein and fat as their primary sources of energy, there is no specific requirement for any CHO in their diet. Nevertheless, CHO are present in moderate to high quantities in many diets for cats, and especially in diets designed for GI disease because CHO, especially well-cooked starches, are very highly digestible (>95%), are a readily available energy source for use in pet foods, are necessary for production of dry food kibble, and reduce the cost of the foods. Despite this, in cats with severe intestinal mucosal disease or mucosal atrophy, malabsorption will likely occur because of the decreased availability of the CHO-digesting enzymes, including disaccharidases. This problem was illustrated in one study of cats with IBD that showed increased CHO malabsorption based on breath hydrogen excretion, but the cats had no changes in fecal character. In many cats, the problem was subclinical. The presence of undigested CHO in the GI tract will ultimately result in bacterial flora changes and growth of pathogenic species that out-compete beneficial bacteria for resources, and can result in development of osmotic diarrhea. Thus, diets formulated for cats with GI disease should ideally contain small amounts of highly digestible CHO. Of all the available CHO
sources, rice has long been considered the ideal CHO for GI disease because it has an amylopectin (limited branching starch structure) that is highly digestible, has a low-fiber content, is gluten free and is not implicated in food hypersensitivity. For these reasons, rice continues to be used in many diets formulated as highly digestible diets for management of GI disease. However, further work is needed to determine the ideal concentration of CHO in feline diets for cats with GI disease.

Fiber

Dietary fiber comprises the nondigestible CHO of plants. This is primarily because of its beta-linked structure, which makes it inaccessible to the normal starch-digesting enzymes of the mammalian GI tract. These plant fibers are generally classified by the ability of bacteria in the GI tract to break them down (this breakdown is also called fermentability or solubility) into their component parts: water, carbon dioxide, short-chain fatty acids (SCFA), and hydrogen ions. Soluble fibers are more fermentable by the bacterial flora, result in a greater production of SCFAs (which are an essential nutrient for the colonic epithelium), and increase fecal water content. In the small intestine, soluble fibers form gels that delay gastric emptying, inhibit absorption of nutrients, and slow transit of ingesta through the GI tract. In cats with severe colonic disease, soluble fibers can be beneficial not only because they increase the concentration of SCFA in the lumen, which have a trophic role and will increase colonoocyte growth and proliferation, but also because they increase the growth of beneficial microbial species such as Lactobacilli and Bifidobacteria spp. The increased growth of these beneficial species prevents the growth of enteric pathogenic bacterial species (eg, Clostridium and Escherichia coli). Insoluble fibers are poorly fermented or not fermented at all, thus their primary role is in their bulking effect, which creates a stretch response in the colon that helps to normalize motility. This can be quite beneficial in cats with fiber-responsive forms of colitis or hair-induced colitis. However, a potential problem occurs in cats that are dehydrated or prone to dehydration, because insoluble fibers may result in a larger, drier fecal mass that can increase the risk of constipation. Further, in cats with chronic or recurrent constipation (obstipation), or cats that have lost normal colonic response to stretch (megacolon), additional insoluble fiber in the diet is contraindicated, because it will only increase the dryness of the large fecal mass without providing benefit. For this reason, it is essential for the clinician to understand the effect of the fiber that is present in the diet and select the appropriate diet for the condition the clinician is attempting to manage. Table 1 provides an overview of the effects of the different fiber types.

Prebiotics and Probiotics

Prebiotics are dietary substances added to pet foods or supplemented as a nutriceutical to increase the beneficial enteric bacterial flora and thus improve GI health. Criteria have been established for classifying food ingredients as prebiotics. Prebiotics must be: 1) resistant to gastric acidity, to hydrolysis by gut enzymes, and to absorption in the GI tract; 2) fermentable by the GI flora; and 3) selective for stimulating growth of intestinal bacteria that contribute to overall health. By increasing the number and health of beneficial bacterial species, it is proposed that they will be able to outcompete pathogenic bacterial species, such as Salmonella, Escherichia coli, Clostridium, or Campylobacter for space, food, and other resources. Further, prebiotics also have other positive benefits that are more difficult to measure, including decreasing in fecal protein catabolites and causing positive changes in immune function. Examples of prebiotics that have been studied in cats include fructo-oligosaccharides, mannano-oligosaccharides, inulin, chicory, lactosucrose, and oligofructose. To date, the studies in cats have been performed in healthy adult cats, thus future studies evaluating the effects of prebiotics in cats with GI disease are needed.

Probiotics are microorganisms that can be added to food with the purpose of exerting beneficial effects on the host. The most common organisms used as probiotics in foods or supplements for humans or animals are the Enterococci, Lactobacilli, and Bifidobacteria. The idea of probiotic therapy is that ingestion of these organisms results in them becoming

Table 1. Comparison of Fermentable and Non-fermentable Fiber Effects on the Gastrointestinal Tract

<table>
<thead>
<tr>
<th>Effect</th>
<th>Soluble (Fermentable) Fiber (eg, beet pulp, guar gum)</th>
<th>Insoluble (Non-fermentable) Fiber (eg, cellulose, methylcellulose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Time</td>
<td>No effect on transit in colon, slows transit of ingesta in small intestine</td>
<td>Normalizes transit in the colon by increasing segmentation (mixing) and improving propulsion, appears to increase speed of transit in small bowel</td>
</tr>
<tr>
<td>Fecal Bulk Bacteria/Fermentation</td>
<td>Decreases (more fermentation, may support beneficial bacteria such as Lactobacilli or Bifidobacteria)</td>
<td>Increases Fermentation occurs, but to a very minor extent—no change in fecal flora</td>
</tr>
<tr>
<td>Water Binding</td>
<td>High water binding, forms thick gels, increases fecal water, feces is wetter and smaller</td>
<td>Water absorption is efficient—feces can become quite dry if it is not expelled quickly or the cat is dehydrated</td>
</tr>
</tbody>
</table>
transient constituents of the gut microflora where they exert their effects on the resident flora and the host’s immune system. In humans, probiotics have been shown to influence the immune response by increasing host reactivity toward pathogenic bacteria and to decrease or modulate host reactivity toward innocuous antigens, thus reducing food allergy, systemic allergic responses, and increasing oral tolerance. In children with acute rotavirus diarrhea, the duration of shedding and the length of the signs are greatly decreased when a single strain of *Lactobacillus* spp is administered. In adult cats with *Campylobacter*-induced diarrhea, addition of *Lactobacillus* to the treatment protocol resulted in a much larger reduction of bacterial load and a more rapid response to treatment than in the cats treated with antibiotic alone. Studies in kittens using the probiotic *Enterococcus faecium* suggest that it may be of benefit in reducing diarrhea due to changes in diet or parasitism; however, further evaluation of the use of probiotics in cats with specific GI diseases such as IBD or food allergy is needed to best determine the appropriate use of probiotics in these conditions.

Dietary Intervention in Gastrointestinal Disease

Highly Digestible (Enteric) Diets

This term is not defined in a regulatory sense, but has generally been reserved for products with protein digestibility of >87% (typical diets are 78%-81%), and fat/CHO digestibility of >90% (typical diets are 77%-85% and 69%-79%, respectively). In general, the commercially available diets in this category are formulated with highly digestible protein and carbohydrate sources, have moderate to low levels of fat, and some soluble fiber, but generally have very low concentrations of insoluble fiber. Some pet food manufacturers add increased amounts of omega-3 fatty acids (fish oil), fructo-oligosaccharides or mannose oligosaccharides (prebiotics), and added antioxidant vitamins and minerals. The products from each company have different formulations and additives, thus individual animals may respond differently to each of these different diets. Just because an animal does not respond to one highly digestible diet does not mean that all highly digestible diets will be ineffective.

Novel Antigen or Elimination Diets

Ideally these diets should: 1) contain a reduced number of novel, highly digestible protein sources or a protein hydrolysate (no intact proteins, molecular weights <10,000 D); 2) avoid protein excesses; 3) avoid additives and vasoactive substances (eg, preservatives, antimicrobials, humectants, coloring agents, flavors, flavor enhancers, emulsifying agents, stabilizers, and thickeners; and 4) be nutritionally adequate for the cat’s life stage. The above recommendations can be achieved with a commercial novel antigen diet or by preparing a homemade elimination diet. For the purposes of a dietary trial, a homemade elimination diet (using a single, novel protein source and a single, highly digestible CHO source) may be reasonable and very effective. However, for long-term feeding, homemade diets must be balanced, or nutritional deficiencies will result. This is particularly important in cats because of their specific and unique nutritional requirements. Dietary trials for dietary sensitivity should last a minimum of 8 to 12 weeks. During that time, it is essential that the only food that the pet receives is the trial food — no treats, flavored drugs, and chew toys that can be ingested.

Increased Dietary Fiber

Many, if not most, commercial pet foods contain small amounts of soluble or insoluble fiber or both. However, the “high”-fiber diets are generally those products containing increased amounts of insoluble fibers. Fiber amounts have generally been designated as normal (<5% of dry matter), mildly increased (5%-10% of dry matter), moderately increased (10%-15% of dry matter), and greatly increased or high fiber (15%-30% of dry matter). For many weight-control or weight-loss diets, an increased amount of dietary fiber is added to the food to dilute calories, induce satiety, and limit food consumption. Although there is a great deal of difficulty in assessing satiety in dogs and cats, the use of increased amounts of dietary fiber in dog foods continues to be advocated. The second major use for high-fiber diets is for pets with colitis, for the reasons discussed above. The key point to remember is this: not all cats will respond appropriately to diets high in fiber, or to certain types of dietary fiber. Thus, a one-diet-fits-all approach is strongly discouraged.

Conclusion

Dietary therapy of feline GI disease is an important component of the overall therapy. In many cats, diet alone may be sufficient to result in resolution of the disease (eg, food allergy or intolerance), whereas in others, dietary therapy is necessary for the management of the disease but insufficient to control it (eg, IBD, lymphoma). In either case, an understanding of the principles of dietary therapy and the diets available is an essential component for success.

References