The dog as a genetic model for immunoglobulin A (IgA) deficiency: Identification of several breeds with low serum IgA concentrations

Mia Olsson a, b, 1,2 , Marcel Frankowiack a, 1 , Katarina Tengvall b , Petra Roosje c , Tove Fall d , Emma Ivansson b , Kerstin Bergvall e , Helene Hansson-Hamlin e , Katarina Sundberg f , Åke Hedhammar e , Kerstin Lindblad-Toh b, g , Lennart Hammarström a, g

a Division of Clinical Immunology (F79), Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital, SE-14186 Huddinge, Sweden
b Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, PO-Box 8466, CH-3001 Bern, Switzerland
c Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Dog Hammarskjöldväg 14B, SE-75237 Uppsala, Sweden
d Department of Clinical Veterinary Science, Swedish University of Agricultural Sciences, Box 7054, SE-750 07 Uppsala, Sweden
e Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-750 07 Uppsala, Sweden
f Department of Clinical Veterinary Science, Swedish University of Agricultural Sciences, Box 7054, SE-750 07 Uppsala, Sweden
g Broad Institute of MIT and Harvard, Cambridge, MA, USA

A R T I C L E I N F O
Article history:
Received 1 April 2014
Received in revised form 13 May 2014
Accepted 16 May 2014

Keywords:
Immunoglobulin A (IgA) deficiency
Immunodeficiency
Dog
German shepherd

A B S T R A C T
Immunoglobulin A (IgA) serves as the basis of the secretory immune system by protecting the lining of mucosal sites from pathogens. In both humans and dogs, IgA deficiency (IgAD) is associated with recurrent infections of mucosal sites and immune-mediated diseases. Low concentrations of serum IgA have previously been reported to occur in a number of dog breeds but no generally accepted cut-off value has been established for canine IgAD. The current study represents the largest screening to date of IgA in dogs in terms of both number of dogs (n = 1267) and number of breeds studied (n = 22). Serum IgA concentrations were quantified by using capture ELISA and were found to vary widely between breeds. We also found IgA to be positively correlated with age (p < 0.0001). Apart from the two breeds previously reported as predisposed to low IgA (Shar-Pei and German shepherd), we identified six additional breeds in which ≥10% of all tested dogs had very low (<0.07 g/l) IgA concentrations (Hovawart, Norwegian elkhound, Nova Scotia duck tolling retriever, Bullterrier, Golden retriever and Labrador retriever). In addition, we discovered low IgA concentrations to be significantly associated with canine atopic dermatitis (CAD, p < 0.0001) and pancreatic acinar atrophy (PAA, p = 0.04) in German shepherds.

Abbreviations: IgAD, IgA deficiency; CAD, canine atopic dermatitis; SPAID, Shar-Pei autoinflammatory disease; AD, Addison’s disease; PAA, pancreatic acinar atrophy; LT, lymphocytic thyroiditis; DM, diabetes mellitus; SRMA, steroid responsive meningitis arteritis; TBST, tris-buffered saline and Tween; PBNP, para-Nitrophenylphosphate; NSDTR, Nova Scotia duck tolling retriever.

* Corresponding author. Tel.: +46 0 8524 835 86; fax: +46 0852483588.
E-mail addresses: Mia.Olsson@ki.se (M. Olsson), Lennart.Hammarstrom@ki.se (L. Hammarström).

1 These authors contributed equally to the work.
2 Tel.: +46 08 524 835 94; fax: +46 08 524 835 88.

http://dx.doi.org/10.1016/j.vetimm.2014.05.010
0165-2427/© 2014 Elsevier B.V. All rights reserved.
1. Introduction

IgA is the predominant antibody at mucosal sites and serves as the basis of the secretory immune system. IgA protects the linings of the gastrointestinal-, respiratory and genitourinary tracts by neutralizing antigens and prevents adherence of bacteria (reviewed in Macpherson et al., 2008). A selective deficiency of IgA (IgAD) is the most common primary immunodeficiency in man. It is associated with an increased risk of recurrent infections at mucosal sites and an increased predisposition for autoimmune diseases, allergy and gastrointestinal infections (Cunningham-Rundles, 2001; Jacob et al., 2008; Yel, 2010). In man, IgAD is defined by a serum IgA concentration <0.07 g/l, together with normal levels of IgG and IgM in individuals older than 4 years (Al-Herz et al., 2011). Unlike many other immunodeficiency disorders, the absence of an animal model that fully resembles human IgAD has limited the knowledge about the pathophysiological mechanisms involved. In selected dog breeds, including the German shepherd (Whitbread et al., 1984), Chinese Shar-Pei (Moroff et al., 1986; Rivas et al., 1995) and specific populations of Beagle (Felsburg et al., 1985), low IgA concentrations or even overt deficiency have been observed in some animals. Low serum IgA concentrations in dogs have also been reported to clinically resemble human IgAD in terms of an association to recurrent infections (Felsburg et al., 1985; Moroff et al., 1986; Willard et al., 1994) and immune mediated disease (Day, 1996).

In dogs, quantification of the five immunoglobulins is one of the most common assessments of immune function. Hence the literature on IgA concentrations in dogs is extensive. Despite this attention, the normal range of serum IgA as well as a generally accepted cut-off value for IgA deficiency has not been established yet. In the present study, we performed an extensive screen of serum IgA concentrations in dogs, using 1267 dogs from 22 different breeds. We aimed to define the normal range of serum IgA in dogs and to identify breeds with a high prevalence of low IgA concentrations to serve as a basis for future gene mapping studies. In addition, we investigated the possible association to immune mediated diseases including allergy, autoimmune- and autoinflammatory disease.

2. Materials and methods

2.1. Samples

Blood samples were collected with the owners’ written consent in collaboration with veterinarians in the United States, Sweden and Switzerland from privately owned purebred dogs aged between 0.5 and 17 years. Ethical approval was granted by the Swedish Animal Ethical Committee (no. C62/10), the Swedish animal Welfare Agency (no. 31-1711/10) and The Broad Institute: Linblad-Toh 0910-074-13 and the canton of Bern: Tosso Leeb 23/10. Serum was isolated from blood samples after centrifugation and stored at −20 °C until used. A smaller proportion of the samples underwent one additional thaw/freezing cycle as they were used for other purposes prior to this study. However, considering the high stability of serum IgA, this is not expected to have influenced the results (Janzi et al., 2005).

The study population consisted of 1267 dogs from 22 different breeds, both healthy and diseased (Supplementary Table 1). Diseases with a significant number of cases represented were: canine atopic dermatitis (CAD, n = 289), Shar-Pei autoinflammatory disease (SPAID, n = 84), Addison’s disease (AD, n = 58), pancreatic acinar atrophy (PAA, n = 36), lymphocytic thyroiditis (LT, n = 13), diabetes mellitus (DM, n = 10), and steroid responsive meningitis arteritis (SRMA, n = 9). The breakdown of the total population, diagnostic criteria and the corresponding phenotypic data is presented in Supplementary Table 2. Due to low age (< one year), 20 dogs were removed from all analyses (except the test of a correlation between IgA and age): Shar-Pei (n = 5), Nova Scotia duck tolling retriever (n = 3), Bullterrier (n = 3), Golden retriever (n = 4), Labrador retriever (n = 4) and German shepherd (n = 1).

2.2. Canine IgA ELISA

Serum immunoglobulin concentrations were measured by capture enzyme-linked immunosorbent assay (ELISA). All samples were run at least twice in duplicates. Samples showing strong variation (CV >15%) between the duplicates were rerun and potential outliers were subsequently excluded (n = 2). The protocol has previously been used to screen dog serum samples for IgA deficiency in our laboratory (Tengvall et al., 2013; Frankowiack et al., 2013). In short, serum samples were measured for their serum IgA concentration using polyclonal goat anti-dog IgA antibodies (AbD Serotec, Oxford, UK) and alkaline phosphatase-conjugated polyclonal goat anti-dog IgA (Bethyl Laboratories, TX, USA). The antibodies were diluted 1:2,000 with carbonate-bicarbonate buffer (0.05 M, pH 9.6) or Tris-buffered saline and Tween (TBST) respectively. Samples were diluted 1:25,000, 1:50,000 and 1:100,000 with phosphate-buffered saline with Tween (PBST). Para-Nitrophenylphosphate (PNPP) was used as a substrate. Serum samples from dogs, kindly provided by Professor M.J. Day, Bristol University (England), with previously determined IgA concentrations were used as controls for each individual measurement.

2.3. Statistics

All descriptive statistics were calculated using routine procedures and software (GraphPad Prism 6.0, La Jolla, CA, USA). Normal distribution was tested by D’Agostino-Pearson omnibus K2 test and the effect of age on IgA concentration was assessed by Spearman correlation test. Comparisons of IgA concentrations between different groups of animals (females/males, castrated/non-castrated, case/control for a certain disease phenotype) was assessed by the Mann–Whitney test and plotted following log transformation of the values. Case–control tests of disease phenotypes were performed within breeds and significance levels were considered if p < 0.05.
3. Results and discussion

IgA concentrations ranged from 0.01 to 3.0 g/l and deviated significantly from a Gaussian distribution (Supplementary Fig. 1). The median IgA concentration in the entire study population was 0.18 g/l, the mean 0.27 g/l and the lower 95% CI of mean 0.26 g/l (Table 1). Previous cut-offs for IgA deficiency in dogs have been established from the 95% CI of the mean in one-breed studies (0.18 g/l in Felsburg et al., 1985 and 0.15 g/l in Rivas et al., 1995; Day, 1999). In our IgA screen of multiple dog breeds, we report a higher 95% CI of the mean, more similar to what earlier has been observed in a population of crossbred dogs (0.22 g/l, Day and Penhale, 1988). The production of IgA is known to be age-dependent and this was also reflected in our study population where IgA concentrations were positively correlated to age (p < 0.0001, Supplementary Fig. 2). In dogs, IgA production is assumed to stabilize at around one year of age (Reynolds and Johnson, 1970; Felsburg et al., 1985; Glickman et al., 1988). Therefore, 20 dogs younger than one year were excluded in the subsequent analyses. In humans, serum IgA concentrations are recognized to be higher in males than in females (Weber-Mzell et al., 2004; Gonzalez-Quintela et al., 2008), whilst in dogs the literature is contradictory (Glickman et al., 1988; Schreiber et al., 1992; Griot-Wenk et al., 1999). In our study, no sex-dependency could be detected for serum IgA concentrations and no difference was noted between dogs castrated or not (Supplementary Fig. 3a and b).

We found IgA concentrations to vary widely amongst breeds (Fig. 1, Table 1). This pronounced difference may explain the lack of an established normal range of IgA and an accepted cut-off value for IgA deficiency in dogs. The 95% CI of the means of each breed, that would be used to define the cut-off for abnormally low IgA concentrations in a population, ranged from 0.05 to 0.73 g/l. In ten of the breeds, we observed a high percentage (>10%) of individuals with low IgA concentrations (Table 1, Supplementary Fig. 4) when applying the human cut-off for IgAD. This cut-off value is much lower than the suggested canine definitions of IgAD (Felsburg et al., 1985; Rivas et al., 1995; Day, 1999), and thus we may even underestimate the frequency of IgA deficiency in the current study. On the other hand, we may overestimate the number of breeds predisposed to IgA deficiency as the sample set does not represent a random collection of dogs from each breed but is slightly biased to include more dogs diagnosed with different diseases. However, it is not clear weather the link between immune mediated disease and low IgA is causative (primary) or secondary to the disease.

Shar-Pei stands out as the most high-risk breed for low IgA concentrations with the lowest median IgA concentration (0.08 g/l) and 45% ‘IgA deficient’ individuals. Other breeds with ≥10% of dogs with low IgA are Hovawart, Norwegian elkhound, Nova Scotia duck tolling retriever (NSDTTR), Belgian shepherd, American Staffordshire terrier, Bullterrier, German shepherd, Golden retriever, Labrador retriever and Staffordshire bullterrier. For Belgian shepherd, American Staffordshire terrier and Staffordshire bullterrier, ‘age at sampling’ was unknown and thus, no further conclusions can be drawn regarding IgA deficiency in these three breeds as it could potentially reflect a large proportion of young dogs. The other seven breeds were represented by adult individuals and can be added to the list below Shar-Pei of breeds of high risk of IgA deficiency. However, as IgG and IgM were not evaluated in this study, it is not clear whether the immunodeficiency observed in these breeds is of selective or common nature and supplementary studies are required to understand the immunodeficiency in each specific breed.

Also, it is worth noticing that few individuals represented some of the breeds identified to be at high risk of IgA deficiency, and an extended study with more dogs from these breeds would be beneficial to confirm the result. The genome structure in dog breeds (characterized by strong linkage disequilibrium and long haplotype blocks), allows mapping of disease-causing genes in case–control association studies using fewer markers and individuals compared to similar studies in humans (reviewed in Karlsson and Lindblad-Toh, 2008). To our knowledge, no attempts have been made to map genes and mutations underlying IgA deficiency in dogs. In this report, we suggest several breeds to be predisposed to IgA deficiency and any of these could theoretically serve as a genetic disease model for human IgAD.

Interestingly, the German shepherd breed which has been reported several times to be a high-risk breed for IgA deficiency (Whitbread et al., 1984; Batt et al., 1991), was not amongst those with the lowest IgA concentrations in our study. In German shepherd, IgA concentration was significantly lower in dogs diagnosed with canine atopic dermatitis (CAD, p < 0.0001) and pancreatic acinar atrophy (PAA, p = 0.04) (Supplementary Table 1). The association between CAD and low IgA concentrations has been described in one of our earlier studies (Tengvall et al., 2013), but the correlation to PAA has not previously been observed. CAD also occurred in a high frequency in Golden retriever and Labrador retriever in our study population, but no association with low IgA concentrations was detected in these breeds. The German shepherd is genetically predisposed to multiple immune mediated diseases and clearly has a defective mucosal immune response (Whitbread et al., 1984; Batt et al., 1991; Littler et al., 2006; Maeda et al., 2013). No other significant correlations were observed between dogs affected versus unaffected by various immune mediated diseases (Supplementary Table 1). However, the number of dogs in each breed diagnosed with SRMA, LT, Addison’ disease or DM in our study population was fairly small and may not be sufficient to identify such correlations.

Most purebred dog breeds show a very high susceptibility to one or more genetic diseases due to founder effects, breeding practices and reproductive isolation (Ostrander et al., 2000; Karlsson and Lindblad-Toh, 2008). IgAD appears to be one of these diseases and shared by multiple breeds. In a previous study, we have reported low IgA concentrations in wolves (Canis lupus), the wild ancestor of the domestic dog (Frankowiack et al., 2013). In that study, we used the Scandinavian wolf population, which is known to be highly inbred with very low levels of genetic variation (Ellegren, 1999; Hagenblad et al., 2009). This suggests that
the risk allele(s) predisposing to IgAD may have been transferred from wolves to dogs during domestication. As there is no obvious relatedness between the breeds identified to frequently have low IgA concentrations in this study (see Supplementary Fig. 5), it is more likely that IgA deficiency is yet another example of an enrichment of risk alleles for diseases within dog breeds.

4. Conclusion

The current study presents the hitherto largest screen of IgA in dogs in terms of number of breeds represented. IgA concentrations were found to vary widely between breeds, which explains the lack of a generally accepted diagnostic cut-off for IgA deficiency in dogs. We identified eight

Table 1

<table>
<thead>
<tr>
<th>Breed</th>
<th>Number of ind.</th>
<th>IgA min</th>
<th>25% percentile</th>
<th>Median IgA</th>
<th>75% percentile</th>
<th>IgA max</th>
<th>Mean IgA (SD)</th>
<th>Lower 95% CI of the mean</th>
<th>IgA <0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population</td>
<td>1247 a</td>
<td>0.01</td>
<td>0.1</td>
<td>0.18</td>
<td>0.33</td>
<td>2.99</td>
<td>0.27 (0.28)</td>
<td>0.26</td>
<td>15%</td>
</tr>
<tr>
<td>Shorthaired pei</td>
<td>157</td>
<td>0.01</td>
<td>0.05</td>
<td>0.08</td>
<td>0.15</td>
<td>0.56</td>
<td>0.12 (0.97)</td>
<td>0.1</td>
<td>45%</td>
</tr>
<tr>
<td>Norwegian elkhund</td>
<td>14</td>
<td>0.04</td>
<td>0.05</td>
<td>0.09</td>
<td>0.28</td>
<td>0.59</td>
<td>0.18 (0.16)</td>
<td>0.1</td>
<td>32%</td>
</tr>
<tr>
<td>Nova Scotia duck tolling retriever</td>
<td>11</td>
<td>0.02</td>
<td>0.06</td>
<td>0.13</td>
<td>0.44</td>
<td>0.77</td>
<td>0.24 (0.23)</td>
<td>0.1</td>
<td>20%</td>
</tr>
<tr>
<td>Belgian shepherd</td>
<td>10</td>
<td>0.02</td>
<td>0.12</td>
<td>0.18</td>
<td>0.32</td>
<td>0.85</td>
<td>0.26 (0.24)</td>
<td>0.08</td>
<td>20%</td>
</tr>
<tr>
<td>Bullterrier</td>
<td>14</td>
<td>0.02</td>
<td>0.08</td>
<td>0.19</td>
<td>0.28</td>
<td>0.37</td>
<td>0.18 (0.11)</td>
<td>0.12</td>
<td>15%</td>
</tr>
<tr>
<td>American Staffordshire</td>
<td>13</td>
<td>0.04</td>
<td>0.09</td>
<td>0.22</td>
<td>0.32</td>
<td>0.53</td>
<td>0.22 (0.13)</td>
<td>0.13</td>
<td>15%</td>
</tr>
<tr>
<td>German shepherd</td>
<td>319</td>
<td>0.02</td>
<td>0.12</td>
<td>0.16</td>
<td>0.27</td>
<td>1.34</td>
<td>0.21 (0.16)</td>
<td>0.19</td>
<td>14%</td>
</tr>
<tr>
<td>Golden retriever</td>
<td>168</td>
<td>0.03</td>
<td>0.1</td>
<td>0.18</td>
<td>0.34</td>
<td>1.12</td>
<td>0.26 (0.21)</td>
<td>0.22</td>
<td>13%</td>
</tr>
<tr>
<td>Labrador retriever</td>
<td>141</td>
<td>0.03</td>
<td>0.1</td>
<td>0.19</td>
<td>0.32</td>
<td>1.98</td>
<td>0.28 (0.3)</td>
<td>0.23</td>
<td>12%</td>
</tr>
<tr>
<td>Staffordshire</td>
<td>20</td>
<td>0.04</td>
<td>0.11</td>
<td>0.23</td>
<td>0.35</td>
<td>0.58</td>
<td>0.24 (0.15)</td>
<td>0.17</td>
<td>10%</td>
</tr>
<tr>
<td>Bearded collie</td>
<td>49</td>
<td>0.04</td>
<td>0.12</td>
<td>0.15</td>
<td>0.23</td>
<td>0.61</td>
<td>0.19 (0.13)</td>
<td>0.15</td>
<td>6%</td>
</tr>
<tr>
<td>Tibetan spaniel</td>
<td>16</td>
<td>0.06</td>
<td>0.13</td>
<td>0.23</td>
<td>0.33</td>
<td>1.33</td>
<td>0.33 (0.33)</td>
<td>0.15</td>
<td>6%</td>
</tr>
<tr>
<td>Rottweiler</td>
<td>20</td>
<td>0.05</td>
<td>0.14</td>
<td>0.21</td>
<td>0.31</td>
<td>0.95</td>
<td>0.27 (0.20)</td>
<td>0.17</td>
<td>5%</td>
</tr>
<tr>
<td>Giant schnauzer</td>
<td>20</td>
<td>0.05</td>
<td>0.27</td>
<td>0.4</td>
<td>0.65</td>
<td>0.91</td>
<td>0.43 (0.24)</td>
<td>0.32</td>
<td>5%</td>
</tr>
<tr>
<td>Standard Poodle</td>
<td>137</td>
<td>0.03</td>
<td>0.17</td>
<td>0.29</td>
<td>0.49</td>
<td>2.6</td>
<td>0.41 (0.38)</td>
<td>0.36</td>
<td>3%</td>
</tr>
<tr>
<td>Boxer</td>
<td>20</td>
<td>0.14</td>
<td>0.19</td>
<td>0.25</td>
<td>0.47</td>
<td>0.66</td>
<td>0.33 (0.16)</td>
<td>0.25</td>
<td>0%</td>
</tr>
<tr>
<td>Border collie</td>
<td>20</td>
<td>0.08</td>
<td>0.15</td>
<td>0.37</td>
<td>0.49</td>
<td>0.92</td>
<td>0.37 (0.24)</td>
<td>0.25</td>
<td>0%</td>
</tr>
<tr>
<td>Jamthund</td>
<td>19</td>
<td>0.07</td>
<td>0.21</td>
<td>0.37</td>
<td>0.67</td>
<td>1.8</td>
<td>0.56 (0.48)</td>
<td>0.32</td>
<td>0%</td>
</tr>
<tr>
<td>Berner sennen</td>
<td>21</td>
<td>0.09</td>
<td>0.28</td>
<td>0.45</td>
<td>0.65</td>
<td>0.96</td>
<td>0.48 (0.25)</td>
<td>0.36</td>
<td>0%</td>
</tr>
<tr>
<td>Samoyed</td>
<td>19</td>
<td>0.17</td>
<td>0.31</td>
<td>0.75</td>
<td>1.15</td>
<td>3.0</td>
<td>0.89 (0.81)</td>
<td>0.5</td>
<td>0%</td>
</tr>
<tr>
<td>Leonberger</td>
<td>20</td>
<td>0.41</td>
<td>0.65</td>
<td>0.85</td>
<td>1.1</td>
<td>1.8</td>
<td>0.89 (0.32)</td>
<td>0.73</td>
<td>0%</td>
</tr>
</tbody>
</table>

a 20 dogs removed from the total 1267 due to low age (<one year).

Fig. 1. IgA concentrations are plotted with a log transformation of the values and sorted based on median values. In the total population, IgA ranged between 0.01 and 3.0 g/l but varies widely among the 22 breeds in the study. The dotted lines represent the human cut-off value for IgAD (0.07 g/l) and a canine cut-off (0.15 g/l), suggested twice by others (Rivas et al., 1995; Day, 1999).
breeds in which ≥10% of all adult dogs were IgA deficient according to the human cut off value for IgAD. Apart from Shar-Pei and German shepherd, the other six breeds have not been described as IgA deficient before. We suggest this new knowledge to be taken into account when monitoring canine health in the veterinary practice. As dogs offer an advantageous comparative model for human disease, we have also identified six new potential genetic models of IgAD.

Conflict of interest statement

The authors declare that no competing interest exists.

Acknowledgements

We thank all the dog owners and veterinarians for providing us with blood samples and clinical information of all the dogs. For support with sample collection we also thank Izabella Baranowska-Körberg, Mateo Biancho, Charlotte Lantz, Susanne Gustafsson, Tosso Leeb and Eliane Marti. We are also grateful to Professor M.J. Day, Bristol University for providing the canine IgA reference serum. This work was support by the Swedish Medical Research Council (VR) (grant no. K2012–56X-05975). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.vetimm.2014.05.010.

References

